************************************ Problem J - Game of Nines — Solution ************************************ 1. Story-style intuition ======================== Picture your digits :math:`0`–:math:`8` as tokens on a **10-hour clock** (positions :math:`0` through :math:`9`). When you “add digit :math:`a` to digit :math:`b`”, you **move** token :math:`b` forward by :math:`a` ticks around the clock. If you land exactly on :math:`9`, that token disappears. Two important facts drive everything: 1. **Helpers don’t get used up.** A digit you use as an adder stays on the table. You can reuse it indefinitely. 2. **Only the total step size matters.** Adders are reusable and order doesn't matter, so what matters is the **set of step sizes you can produce in total** modulo :math:`10`. We call this set of reusable digits the **helper set** :math:`H`. 2. What is :math:`d`? ===================== Given a helper set :math:`H`, the achievable total steps (mod :math:`10`) are exactly the multiples of: .. math:: d := \gcd\bigl(10,\; \text{all digits in } H\bigr). This is because the sums of helpers form a subgroup of :math:`\mathbb{Z}_{10}`, and every subgroup is :math:`\{0,d,2d,\ldots,10-d\}` for some :math:`d\in\{1,2,5,10\}`. Interpretation: **:math:`d` is your tick size** around the circle. * :math:`d=1` → can move any number of steps * :math:`d=2` → even steps only * :math:`d=5` → only multiples of 5 * :math:`d=10` → no movement possible A token :math:`b` is eliminable **iff**: .. math:: b \text{ is eliminable using } H \iff d \mid (9-b). 3. Everything reduces to one gcd ================================ Take :math:`H` to be **all digits** you have. Define: .. math:: g = \gcd(10, a_1, a_2, \dots, a_n). * If :math:`g=1`, you can produce every step size → you can eliminate tokens until only **one** remains. * If :math:`g\in\{2,5,10\}`, no :math:`9-b` is divisible by :math:`g`, so **nothing can be eliminated**. Thus: .. math:: \text{Answer} = \begin{cases} 1 & \text{if } \gcd(10, a_1,\dots,a_n)=1,\\[4pt] n & \text{otherwise.} \end{cases} 4. Constructive play when :math:`g=1` ===================================== **Case 1:** You have a digit in :math:`\{1,3,7\}` (coprime with 10). Keep one; repeatedly add it to any other digit until that digit becomes :math:`9` and disappears. **Case 2:** Otherwise, :math:`g=1` implies you have a :math:`5` and a nonzero even :math:`e\in\{2,4,6,8\}`. Keep :math:`\{e,5\}` as helpers. For a target :math:`b`: * If :math:`b` is odd → eliminate using repeated :math:`e` moves. * If :math:`b` is even → apply :math:`5` once to make it odd, then finish with :math:`e`. You can also eliminate the :math:`5` using :math:`e` because :math:`5 + ke \equiv 9 \pmod{10}` always has a solution. 5. Short proof ============== 1. Achievable totals form a subgroup of :math:`\mathbb{Z}_{10}` → equal to multiples of :math:`d`. 2. :math:`b` is eliminable ⇔ :math:`b+t\equiv9\pmod{10}` for some achievable :math:`t` ⇔ :math:`d\mid(9-b)`. 3. If :math:`g=1`, all digits are eliminable; if :math:`g\in\{2,5,10\}`, none are. 4. A move consumes two digits but removes at most one, so **one token remaining** is optimal. 6. Algorithm ============ 1. Read :math:`n` and digits :math:`a_i`. 2. Compute :math:`g=\gcd(10,a_1,\ldots,a_n)`. 3. Output **1** if :math:`g=1`, else :math:`n`. + **Time:** :math:`\Theta(n)` + **Memory:** :math:`\Theta(1)` 7. Reference implementations ============================ Python ------ .. code-block:: python import sys import math def solve(): data = sys.stdin.read().strip().split() n = int(data[0]) g = 10 for i in range(1, n + 1): x = int(data[i]) g = math.gcd(g, x) print(1 if g == 1 else n) if __name__ == "__main__": solve() 8. Quick sanity checks ====================== * :math:`2 3 6` ⇒ :math:`\gcd(10,2,3,6)=1` ⇒ output **1** * :math:`4 4` ⇒ :math:`\gcd(10,4,4)=2` ⇒ output **2** * :math:`0 5 5` ⇒ :math:`\gcd(10,0,5,5)=5` ⇒ output **3** * :math:`2 5` ⇒ :math:`\gcd(10,2,5)=1` ⇒ output **1**